
Bayesian Neural Networks

General Principles

To model complex, non-linear relationships between variables, we can use multiple approaches
including, splines, polynomials, gaussian processes, and neural networks. Here, we will focus
on a Bayesian Neural Network (BNN). Think of a neural network as a highly flexible function
made of interconnected layers of “neurons.” Each connection between neurons has a weight,
and each neuron has a bias. These weights and biases are like a vast set of adjustable knobs. In
a standard network, the goal is to find the single best setting for all these knobs to map inputs
to outputs. Unlike a standard neural network which learns a single set of optimal weights, a
BNN learns distributions over its weights and biases. This allows it to capture not just the
relationship in the data, but also its own uncertainty about that relationship. For this, we
need to define:

1) A Network Architecture, which specifies the number of layers, the number of neurons
in each layer, and the activation functions (e.g., ReLU, tanh) that introduce non-linearity.
This defines the structure of our “knobs.”

2) Priors for Arrays of Weights and Biases. In a simple model like linear regression,
we define a prior for each individual parameter (e.g., one prior for the slope 𝛽). In
a neural network, which can have thousands or millions of weights, we don’t define a
unique prior for every single one. Instead, we define a prior that acts as a template for
an entire array of parameters. For example, we might declare that all weights in a
specific layer are drawn from the same Normal(0, 1) distribution. This allows us to
efficiently specify our beliefs about the entire set of network parameters.

3) An Output Distribution (Likelihood), which defines the probability of the data
given the network’s predictions. For a continuous variable (regression), this is often a
Normal distribution with a variance term 𝜎 that quantifies the data’s noise around the
model’s predictions.

1



Considerations

Caution

• Like all Bayesian models, BNNs consider model parameter uncertainty �. The
parameters here are the network’s weights (W) and biases (b). We quantify our
uncertainty about them through their posterior distribution �. Therefore, we must
declare prior distributions � for all weights and biases, as well as for the output
variance 𝜎.

• Unlike in a linear regression where the coefficient 𝛽 has a direct interpretation (e.g.,
the effect of weight on height), the individual weights and biases in a BNN are
not directly interpretable. A single weight’s influence is entangled with thousands
of other parameters through non-linear functions. Consequently, BNNs are best
viewed as powerful predictive tools rather than explanatory ones. They excel at
learning complex patterns and quantifying predictive uncertainty, but if the goal
is to isolate and interpret the effect of a specific variable, a simpler model is often
more appropriate.

• Prior distributions are built following these considerations:

– As the data is typically scaled � (see introduction), we can use a standard
Normal distribution (mean 0, standard deviation 1) as a weakly-informative
prior for all weights and biases. This acts as a form of regularization.

– Since the output variance 𝜎 must be positive, we can use a positively-defined
distribution, such as the Exponential or Half-Normal.

• BNNs can be used for both regression and classification. The final layer’s activation
and the chosen likelihood distribution depend on the task. For binary classification,
a sigmoid activation is paired with a Bernoulli likelihood, which requires a link
function � (logit) to connect the linear output of the network to the probability
space [0, 1]. For regression, the identity activation is often used with a Gaussian
likelihood.

Example

Below is an example code snippet demonstrating a Bayesian Neural Network for regression
using the Bayesian Inference (BI) package. Data consist of two continuous variables (height
and weight), and the goal is to predict height from weight using a non-linear model.

2



Python

from BI import bi
import json
import jax.numpy as jnp
import matplotlib.pyplot as plt

# Setup device------------------------------------------------
m = bi(platform='cpu')

# Import Data & Data Manipulation ------------------------------------------------

with open('BNN.json', 'r', encoding='utf-8') as file:
# Load the JSON data into a Python dictionary
data = json.load(file)

# X is already scaled
X = jnp.array(data['X']) # Note X shape = (N,2) where first column is the intercept and second column is the predictor
Y = jnp.array(data['Y']) # Note Y shape = (N,1) where N is the number of observations

m.data_on_model = dict(X = X, Y = Y)
# Define model ------------------------------------------------
def model(X, Y, D_H=5, D_Y=1):

N, D_X = X.shape

# First hidden layer: Transforms input to N × D_H (hidden units)
w1 = m.bnn.layer_linear(

X,
dist=m.dist.normal(

0, 1, name='w1',shape=(D_X,D_H)
),

activation='tanh'
)

# sample final layer of weights and neural network output
# Final layer (z3) computes linear combination of second hidden layer
w2 = m.bnn.layer_linear(

X=w1,
dist=m.dist.normal(0, 1, name='w2',shape=(D_H,D_Y))
)

sigma = m.dist.exponential(1, name='sigma')

3



m.dist.normal(w2, sigma, obs=Y,name='Y')

# Run mcmc ------------------------------------------------
m.fit(model, num_samples=500, progress_bar=False) # Approximate posterior distributions for weights, biases, and sigma

# Predictions from the model ------------------------------------------------
pred = m.sample(samples = 500)['Y']
pred = pred[..., 0]
mean_prediction = jnp.mean(pred, axis=0)
percentiles = jnp.percentile(pred, jnp.array([5.0, 95.0]), axis=0)
# make plots
fig, ax = plt.subplots(figsize=(8, 6), constrained_layout=True)
# plot training data
ax.plot(X[:, 1], Y[:, 0], "kx")
# plot 90% confidence level of predictions
ax.fill_between(

X[:, 1], percentiles[0, :], percentiles[1, :], color="lightblue"
)
# plot mean prediction
ax.plot(X[:, 1], mean_prediction, "blue", ls="solid", lw=2.0)
ax.set(xlabel="X", ylabel="Y", title="Mean predictions with 90% CI")

jax.local_device_count 16
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 
� This function is still in development. Use it with caution. � 

[Text(0.5, 0, 'X'),
Text(0, 0.5, 'Y'),
Text(0.5, 1.0, 'Mean predictions with 90% CI')]

4



R

library(BayesianInference)
m=importBI(platform='cpu')

# Load csv file
# Import data ------------------------------------------------
path = normalizePath(paste(system.file(package = "BayesianInference"),"/data/BNN.json", sep = ''))
data <- fromJSON(path)
m$data_on_model = list()
m$data_on_model$X = jnp$array(data$X)
m$data_on_model$Y = jnp$array(data$Y)

# Define model ------------------------------------------------
model <- function(X, Y, D_X = 2, D_H=5L, D_Y=1L){

5



w1 <- m$bnn$layer_linear(X, dist=bi.dist.normal(0, 1, name='w1',shape=c(D_X,D_H)), activation='tanh')

w2 <- m$bnn$layer_linear(
w1,
dist=bi.dist.normal(0, 1, name='w2',shape=c(D_H,D_Y)),
activation='tanh'

)

# Prior for the output standard deviation
s = bi.dist.exponential(1, name = 's')

# Likelihood
bi.dist.normal(w2, s, obs = Y)

}

# Run mcmc ------------------------------------------------
m$fit(model) # Approximate posterior distributions

6



Mathematical Details

Notes

Note

• The primary difference between a Frequentist and Bayesian neural network lies in
how parameters are treated. In the frequentist approach, weights and biases are
point estimates found by minimizing a loss function (e.g., via gradient descent).
Techniques like Dropout or L2 regularization are often used to prevent overfitting,
which can be interpreted as approximations to a Bayesian treatment. In contrast,
the Bayesian formulation does not seek a single best set of weights. Instead, it uses

7



methods like MCMC or Variational Inference to approximate the entire posterior
distribution for every weight and bias. This provides a principled and direct way
to quantify model uncertainty.

• While present an example of non-linear regression, the Bayesian Neural Network
can be used for linear regressions as well (keeping in mind that interpretation of
the weights are impossible).

Reference(s)

(neal1995bayesian?)

8


	General Principles
	Considerations
	Example
	Python
	R
	Mathematical Details
	Notes
	Reference(s)

