Dirichlet Process Mixture Models

General Principles

To discover group structures or clusters in data without pre-specifying the number of groups,
we can use a Dirichlet Process Mixture Model (DPMM) Gershman and Blei (2012). This
is a unsupervised clustering method . Essentially, the model assumes the data is generated
from a collection of different Gaussian distributions, and it simultaneously tries to figure out:

1. How many clusters (K) exist: Unlike algorithms like K-Means, the DPMM infers the
most probable number of clusters directly from the data.

2. The properties of each cluster: For each inferred cluster, it estimates its location
and its spread.

3. The assignment of each data point: It determines the probability of each data point
belonging to each cluster.

Considerations

O Caution

« A DPMM is a Bayesian model that considers uncertainty in all its parameters.
The core idea is to use the Dirichlet Process prior that allows for a potentially
infinite number of clusters. In practice, we use a finite approximation where we cap
the maximum number of clusters at K and use the Stick-Breaking Process .

o The key parameters and their priors are:

— Concentration a: This single parameter controls the tendency to create new
clusters. A low favors fewer, larger clusters, while a high allows for many
smaller clusters. We typically place a Gamma prior on « to learn its value from
the data.

. — Cluster Weights w: Generated via the Stick-Breaking process from «. These
are the probabilities of drawing a data point from any given cluster.

— Cluster Parameters (u, X): Each potential cluster has a mean p and a co-
variance matrix Y. If the data have multiple dimensions, we use a multivariate
normal distribution (see chapter, 14). However, if the data is one-dimensional,
we use a univariate normal distribution.

e The model is often implemented in its marginalized form . Instead of explicitly
assigning each data point to a cluster, we integrate out this choice. This creates
a smoother probability surface for the inference algorithm to explore, leading to
much more efficient computation.

Example

Below is an example of a DPMM implemented in BI. The goal is to cluster a synthetic dataset
into its underlying groups. The code first generates data with 4 distinct centers and then
applies the DPMM to recover these clusters.

Python

from BI import bi, jnp
from sklearn.datasets import make_blobs
import numpyro

m = bi(rand_seed = False)

Generate synthetic data

data, true_labels = make blobs(
n_samples=500, centers=8, cluster_std=0.8,
center_box=(-10,10), random_state=101

)

data_mean = jnp.mean(data, axis=0)

data_std = jnp.std(data, axis=0)*2

The model
def dpmm(data, K, data_mean, data_std):
N, D = data.shape # Number of features

1) stick-breaking weights
alpha = m.dist.gamma(1.0, 10.0,name='alpha')

14.%20Varying%20slopes.qmd

with m.dist.plate("beta_plate", K - 1):
beta = m.dist.beta(l, alpha, name = "beta')

w = numpyro.deterministic("w",m.models.dpmm.mix_weights(beta))
2) component parameters

with m.dist.plate("components", K):
mu = m.dist.multivariate_normal (loc=data_mean, covariance_matrix=data_std*jnp.eye (D)

sigma = m.dist.log_normal(0.0, 1.0,shape=(D,),event=1,name='sigma')# shape (T, D)
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0,name='Lcorr')# shape (T, |
scale_tril = sigmal..., None] * Lcorr # shape (T, D, D)

3) Latent cluster assignments for each data point
m.dist.mixture_same_family(
mixing_distribution=m.dist.categorical (probs=w, create_obj=True),
component_distribution=m.dist.multivariate_normal(
loc=mu,
scale_tril=scale_tril,
create_obj=True
) s

obs=data

m.data_on_model = dict(data=data,K = 10, data_mean=data_mean, data_std=data_std)
m.fit(dpmm) # Optimize model parameters through MCMC sampling
m.plot (X=data,sampler=m.sampler) # Prebuild plot function for GMM

jax.local_device_count 16
0% | | 0/1000 [00:00<?, ?7it/s]warmup: 0% | | 1/1000 [00:04<1:07:22, 4.0

Model found 8 clusters.

.

Feature 2

10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5

-10.0

DPMM Posterior Predictive Density (Multi-Chain Robust)

=10 -5 0 5 10
Feature 1

Julia

using BayesianInference
using PythonCall
numpyro = pyimport ("numpyro")

m = importBI(rand_seed = false)

1. Generate Data
sk_datasets = pyimport("sklearn.datasets")

output = sk_datasets.make_blobs(n_samples=500, centers=8, cluster_std=0.8, center_box=(-10,
data = output[0]

data_mean = jnp.mean(data, axis=0)
data_std = jnp.std(data, axis=0) * 2
m.data_on_model = pydict(data=data, K=10, data_mean = data_mean, data_std = data_std)

@BI function dpmm(data, K, data_mean , data_std)
N, D = data.shape

alpha = m.dist.gamma(1.0, 10.0, name="alpha")

beta = pywith(m.dist.plate("beta_plate", K - 1)) do _
m.dist.beta(l, alpha, name = "beta')
end

w = numpyro.deterministic("w", m.models.dpmm.mix_weights (beta))

mu, scale_tril = pywith(m.dist.plate("components", K)) do _
mu_val = m.dist.multivariate_normal (
loc=data_mean,
covariance_matrix=data_std * jnp.eye(D),

name="mu"
)
sigma = m.dist.log_normal(0.0, 1.0, shape=(D,), event=1, name="sigma")
Lcorr = m.dist.lkj_cholesky(dimension=D, concentration=1.0, name="Lcorr")

scale_tril_inner = jnp.expand_dims(sigma, -1) * Lcorr
(mu_val, scale_tril_inner)
end

m.dist.mixture_same_family(
mixing distribution=m.dist.categorical(probs=w, create_obj=true),
component_distribution=m.dist.multivariate_normal(
loc=mu,
scale_tril=scale_tril,
create_obj=true
e

obs=data
end

4. Run

m.fit (dpmm)

@pyplot m.models.dpmm.plot_dpmm(m.data_on_model["data"], m.sampler)

Mathematical Details

The process involves two keys submodels. The first, aims to identify the location and scale
of K potential clusters. The second, aims to identify which cluster is most likely to have

generated a given data point.
Y;J :uzi,l
: ~ MVN : ;B
Yi,D K. .D

i

Hi 1 Ay
: ~ MVN : , B
Hi,.D Ap

%), = Diag(oy,)Q,Diag(oy,)
O1,q ~ HalfCauchy(1)
Q, ~ LKJ(2)

z; ~ Categorical(m)

m(Buk) =8 [[-5

j<K
By ~ Beta(1, a)

a ~ Gamma(1, 10)

Y,
[i,1]
. (:) is the i-th observation of a D-dimensional data array.

k1)
: is the k-th parameter vector of dimension D.

ik, D]
A,
: is a prior for the mean vector as derived from mean of the raw data.

Ap

B is the prior covariance of the cluster means, and is setup as a diagonal matrix with
0.1 along the diagonal.

¥, is the DxD covariance matrix of the k-th cluster (it is composed from o, and).

Diag(o},) is a diagonal matrix whose diagonal entries are the standard deviations:

Oy 0 0
. 0 o :
Dinglo) = |, T
0 w0 oy

0} is a D-vector of standard deviations for the k-th cluster where each element, d, has a
half-cauchy prior.

Q,, is a correlation matrix for the k-th cluster.
z; is a latent variable that maps observation i to cluster k.

7 is a vector of K cluster weights, some of which may be close to zero if the predicted
number of clusters is less than the maximum number of clusters.

Br: The set of K Beta-distributed random variables used in the stick-breaking process
to construct the mixture weights.

a: The concentration parameter, controlling the effective number of clusters.

e The primary advantage of the DPMM is the automatic inference of the number
of clusters. The posterior distribution of the weights w reveals which components
are “active”, giving a probabilistic estimate of K.

e Prior « strongly influence the predicted number of clusters. Below are examples of
this relationship:

Table 1: Impact of Gamma Prior Hyperparameters on Cluster Counts
Shape Rate Behavior
1 15 Forces very
few clusters
5 1 Encourages
many small
clusters
10 2 Same mean,
less variance
2 0.5 Moderately
many
clusters
15 1 Explosive
prior cluster
count

Reference(s)

https://en.wikipedia.org/wiki/Dirichlet_ process https://pyro.ai/examples/dirichlet_ process_mixture.html

Gershman, Samuel J, and David M Blei. 2012. “A Tutorial on Bayesian Nonparametric
Models.” Journal of Mathematical Psychology 56 (1): 1-12.

	General Principles
	Considerations
	Example
	Python
	R
	Julia
	Mathematical Details
	Notes
	Reference(s)

