Principal Component Analysis

General Principles

Principal Component Analysis (PCA) (Tipping and Bishop 1999) is a technique used to
reduce the dimensionality of a dataset by transforming it into a new coordinate system where
the greatest variance of the data is projected onto coordinates (called principal components).
This method helps capture the underlying structure of high-dimensional data by identifying
patterns based on variance.

In Bayesian PCA, uncertainty in the model parameters is explicitly taken into account by
using a probabilistic framework. This allows us to not only estimate the principal components
but also quantify the uncertainty around them and avoid overfitting by incorporating prior
knowledge.

PCA is employed for dimensionality reduction, particularly in scenarios involving high-
dimensional datasets, as it effectively reduces complexity while explicitly accounting for
uncertainty in the underlying latent structure. This approach also plays a crucial role in
data visualization, enabling the projection of intricate, high-dimensional data into more
interpretable 2D or 3D representations. Additionally, PCA excels in feature extraction, where
the latent variables it identifies can be repurposed as informative features for subsequent
tasks, such as classification or clustering. By modeling latent variables, it further enhances
the interpretability and utility of the data for a variety of analytical applications.

Considerations

i Note

e In Bayesian PCA, we assume prior distributions for the latent variables Z and
the principal component loadings W. We place Gaussian priors on both Z and W
and learn their posterior distributions using the observed data X.

¢« Robustness to Outliers: Standard PCA are sensitive to outliers due to the
assumption of Gaussian noise. Robust variants of Robust Bayesian PCA ad-




dress this by employing heavy-tailed distributions for the noise model, such as
the Student’s t-distribution, which reduces the influence of outliers (Archambeau,
Delannay, and Verleysen 2006; Bouwmans and Zahzah 2014).

Automatic Dimensionality Selection: Through techniques like Automatic Rel-
evance Determination (ARD), Bayesian PCA can automatically determine the ef-
fective dimensionality of the latent space. Priors are placed on the relevance of
each principal component, and components that are not supported by the data are
effectively “switched off’ (C. Bishop 1998; C. M. Bishop and Nasrabadi 2006).

Sparsity for High-Dimensional Data: In high-dimensional settings, it is often
desirable for the principal components to be influenced by only a subset of the orig-
inal features, leading to more interpretable results. Sparse Bayesian PCA achieves
this by placing sparsity-inducing priors (e.g., Laplacian or spike-and-slab priors) on
the loading (Sigg and Buhmann 2008; Zou, Hastie, and Tibshirani 2006).

Example

Here is an example code snippet demonstrating Bayesian PCA using BI:

Build in functions

from BI import bi, jnp

m=bi ()

data_path = m.load.iris(only_path=True)
m.data(data_path)
m.data_on_model = dict(

)

m.fit(m.models.pca(type="classic"), progress_bar=False) # or robust, sparse,

=

jnp.array(m.df.iloc[:,1:4] .values)

m.models.pca.plot(

X
y

= m.df.iloc[:,1:4] .values,
= m.df.iloc[:,5] .values,

feature_names = m.df.columns[1:4],
target_names = m.df.iloc[:,6].unique(),
color_var = m.df.iloc[:,1].values

classic,

sparse



Standard

def model(x_train, data_dim, latent_dim, num_datapoints):
# Gaussian prior for the principal component 'W'.
w = m.dist.normal(0, 1, shape=(data_dim, latent_dim), name='w')

# Gaussian prior on the latent variables 'Z'
z = m.dist.normal(0, 1, shape=(latent_dim, num_datapoints), name='z")

# Exponential prior on the noise variance 'epsilon'
epsilon = m.dist.exponential(l, name='epsilon')

# Likelihood
m.dist.normal(w @ z , epsilon, obs = x_train)

m.data_on_model = dict(
X_train=x_train h,
data_dim=data_dim,
latent_dim=4,
num_datapoints=num_datapoints

)

m.fit(model)

Julia

using BayesianInference

m = importBI(platform="cpu")

data_path = m.load.iris(only_path=true)

m.data(data_path)

m.data_on_model = pydict(
X=jnp.array(m.df.iloc[:,1:4].values)

)

m.fit(m.models.pca(type="classic"))

plt = pyimport("matplotlib.pyplot")

# 1. Create empty contexts
globals_dict = pybuiltins.dict()



locals_dict = pybuiltins.dict()

# 2. Define the dummy function safely
dummy_show = pybuiltins.eval("lambda *args, *+*kwargs: None", globals_dict, locals_dict)

# 3. Save the real show function
real_show = plt.show

# 4. Overwrite
plt.show = dummy_show

# 5. Run your plot

m.models.pca.plot(
X = m.df.iloc[:,1:4] .values,
y = m.df.iloc[:,5] .values,
feature names = m.df.columns[1:4],
target_names = m.df.iloc[:,6].unique(),
color_var = m.df.iloc[:,1].values

# 6. Restore real show
plt.show = real_show

# 7. Display the result
display(plt.gcf())
plt.close()

Mathematical Details

We assume the observed data matrix X is centered and arranged with features as rows and
samples as columns, X € RV*YV where N is the number of observations and V the number
of variables. The generative model projects the data into a lower-dimensional space with K
latent variables, K <V, using the following equation:

X ~ Normal(Z - W, o)

where :

e X is the observed data matrix.

e Z € RNV*K is the latent variable matrix (latent features) with K < D. Z is defined by
a Normal distribution with mean 0 and variance 1.



o W € REXV is the matrix of principal components (projection matriz). W is defined by
a Normal distribution with mean 0 and variance 1.

e 0 is the standard deviation of the normal distribution.

The likelihood and priors are defined element-wise for v =1..V, n=1...N, and k = 1...K. for
the following models:

Standard PCA

X ~ Normal(Z - W, o)
Z ~ Normal(0,1)
W ~ Normal(0, 1)

o ~ Exponential(1)

Note

e To account for sign ambiguity in PCA, we can set the number of latent dimensions K
to be equal to the number of variables V. Then, we can calculate the dot product between
the estimated parameters and the data. If it is negative, we multiply the estimated
parameters by -1 to align them with the data. Below, a code snippet highlights how to
do this:

true_params = jnp.array(real_data)
estimated_params = jnp.array(m.posteriors)

# Compute dot product
dot_product = jnp.dot(true_params, estimated_params)

# Align signs if necessary
if dot_product < O:
estimated_params = -estimated_params

# Plot the aligned parameters

plt.scatter(true_params, estimated_params, alpha=0.7)

plt.plot([min(true_params), max(true_params)], [min(true_params), max(true_params)],
plt.xlabel('True Parameters')

plt.ylabel('Estimated Parameters')

plt.title('True vs. Estimated Parameters After Sign Alignment')

plt.show()

|r__|)



True vs. Estimated Parameters After Sign Alignment
4 =!

F
]
Fe
[ ]
-
[ ]

Estimated Parameters
=]

—4 -3 -2 -1 0 1 2 3 4
True Parameters

Reference(s)

Archambeau, Cédric, Nicolas Delannay, and Michel Verleysen. 2006. “Robust Probabilistic
Projections.” In Proceedings of the 23rd International Conference on Machine Learning,
33-40.

Bishop, Christopher. 1998. “Bayesian Pca.” Advances in Neural Information Processing
Systems 11.

Bishop, Christopher M, and Nasser M Nasrabadi. 2006. Pattern Recognition and Machine
Learning. Vol. 4. 4. Springer. https://doi.org/https://link.springer.com/book /978038731
0732.

Bouwmans, Thierry, and El Hadi Zahzah. 2014. “Robust PCA via Principal Component
Pursuit: A Review for a Comparative Evaluation in Video Surveillance.” Computer Vision
and Image Understanding 122: 22-34. https://doi.org/https://doi.org/10.1016/j.cviu.201
3.11.009.

Sigg, Christian D, and Joachim M Buhmann. 2008. “Expectation-Maximization for Sparse
and Non-Negative PCA.” In Proceedings of the 25th International Conference on Machine


https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://doi.org/10.1016/j.cviu.2013.11.009
https://doi.org/10.1016/j.cviu.2013.11.009

Learning, 960-67.

Tipping, Michael E, and Christopher M Bishop. 1999. “Probabilistic Principal Component
Analysis.” Journal of the Royal Statistical Society Series B: Statistical Methodology 61 (3):
611-22.

Zou, Hui, Trevor Hastie, and Robert Tibshirani. 2006. “Sparse Principal Component Analysis.”
Journal of Computational and Graphical Statistics 15 (2): 265-86.



	General Principles
	Considerations
	Example
	Build in functions
	Standard
	Julia
	Mathematical Details
	Standard PCA

	Note
	Reference(s)

